Introduction of alkali-labile units into lignin in transgenic plants by genetic engineering

نویسندگان

  • Yasuyuki Ishikawa
  • Yukiko Tsuji
  • Kanna Sato
  • Amiu Shino
  • Yoshihiro Katayama
  • Jun Kikuchi
  • Hirofumi Hara
  • Shojiro Hishiyama
  • Eiji Masai
  • Shinya Kajita
چکیده

Background Lignin is one of major components of plant secondary cell wall. In plant cell wall, it is synthesized via radical coupling of precursors such as p-coumaryl, coniferyl, and sinapyl alcohols. In early stage of the lignification, 8-O-4’, 8-8’ and 8-5’ dimers are thought to be synthesized mainly from the precursors in the wall. A gramnegative bacterium, Shingobium sp. strain SYK-6 (hereafter refer to as SYK-6) is able to catabolize a wide variety of phenolic compounds including the lignin precursors by its unique enzymatic system. One of catabolic enzymes, LigD, catalyzes oxidation at alpha (benzyl) position of 8-O-4’ dimers and forms carbonyl group at the position (Figure 1). This oxidation is the first step of catabolic pathway of 8-O-4’ dimers in SYK-6. When we express LigD polypeptide in the cell wall of transgenic plants, the oxidative dimers will be expected to be generated and then incorporated into lignin polymer. In some past studies, it has been shown that the presence of carbonyl groups at the alpha position of aryl propane units in lignin greatly speeds up the rate of cleavage of beta-aryl ether linkages during kraft pulping condition [1,2]. In order to contribute to efficient and sustainable production of kraft pulp and the other biomass-derived products such as bioethanol, we introduced the ligD gene into Arabidopsis and hybrid aspen and tried to generate transgenic plants whose lignin can be easy to remove from hollocellulose fraction under alkaline conditions. Method Because of codon usage is significantly different between genes in plants and SYK-6, we chemically synthesized open reading frame (ORF) of the ligD gene for improving its expression in the transgenic plants. After addition of nucleotide sequence for apoplast-targeting signal peptide to the synthesized ligD ORF, it was introduced into Arabidopsis thaliana, tobacco BY-2 and hybrid aspen under the control of cauliflower mosaic virus 35S promoter. LigD expression in the transgenic plants was monitored by Western blot analysis and enzymatic activity with crude extract prepared from each transgenic line. Preliminary analysis of lignin structure by 2D-NMR and nitrobenzene oxidation was also performed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Agrobacterium-Mediated Transformation of the Oryza sativa Thaumatin-Like Protein to Canola (R Line Hyola308) for Enhancing Resistance to Sclerotinia sclerotiorum

Background: Canola is an agro-economically oilseed crop. Yield loss due to fungal disease of stem rot caused by Sclerotinia sclerotiorum is a serious problem in canola cultivation. Thaumatin-like proteins are large groups of the pathogenesis-related proteins which provide resistance to the fungal infection in response to invading pathogens and play a key role in plant defense s...

متن کامل

Functional role of peroxidase gene in the resistance of the cut gerbera flower (Gerbera jamesonii) to stem bending disorder

Peroxidase is one of the most important genes in the lignin biosynthesis pathway. Polymerization of the phenolic derivatives into lignin, a connection between cell wall polymers such as monolignules, consequently, cell wall strength are the main functions of this enzyme. Accordingly, endogenous POD gene was isolated and cloned into gateway expression vector (PK7WG2) containing CAMV 35S promoter...

متن کامل

Degradation of lignin β‐aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK‐6

Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG ...

متن کامل

Biotechnological Reduction of Tobacco (Nicotiana Tabacum L.) Toxicity

BACKGROUND: Nicotiana tobacco contains large amounts of alkaloid nicotine. Tobacco plant is used for smoking and causes many health problems since it is high in nicotine which is one of the widely-recognized toxic compounds with serious side effects for different body organs. Reducing nicotine content of this plant is a way to reduce its health hazards in cigarette smokers. Utilizing the new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011